

Trio WebSocket

This library is a WebSocket implementation for the Trio framework [https://trio.readthedocs.io/en/latest/] that strives for safety,
correctness, and ergonomics. It is based on wsproto [https://wsproto.readthedocs.io/en/latest/], which is a Sans-IO [https://sans-io.readthedocs.io/] state machine that implements most aspects
of the WebSocket protocol, including framing, codecs, and events. The
respository is hosted on GitHub [https://github.com/hyperiongray/trio-websocket/]. This library passes the
Autobahn Test Suite [https://github.com/crossbario/autobahn-testsuite].

[image: PyPI]
 [https://pypi.org/project/trio-websocket/][image: Python Versions][image: MIT License][image: Build Status]
 [https://travis-ci.com/HyperionGray/trio-websocket][image: Coverage]
 [https://coveralls.io/github/HyperionGray/trio-websocket?branch=master]
Contents:

	Getting Started
	Installation

	Client Example

	Server Example

	Clients
	Client Tutorial

	Custom Nursery

	Custom Stream

	Servers
	Server Tutorial

	Custom Stream

	Message Queues

	Timeouts
	Message Timeouts

	Connection Timeouts

	Timeouts on Low-level APIs

	Server Timeouts

	API
	Requests

	Connections

	Utilities

	Recipes
	Heartbeat

	Contributing
	Developer Installation

	Unit Tests

	Documentation

	Autobahn Client Tests

	Autobahn Server Tests

	Versioning

	Release Process

	Credits

Getting Started

Installation

This library supports Python ≥3.5. The easiest installation method is to use
PyPI.

$ pip3 install trio-websocket

You can also install from source. Visit the project’s GitHub page [https://github.com/hyperiongray/trio-websocket/], where you can clone the repository or download a Zip file.
Change into the project directory and run the following command.

$ pip3 install .

If you want to contribute to development of the library, also see
Developer Installation.

Client Example

This example briefly demonstrates how to create a WebSocket client.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	import trio
from trio_websocket import open_websocket_url

async def main():
 try:
 async with open_websocket_url('wss://localhost/foo') as ws:
 await ws.send_message('hello world!')
 message = await ws.get_message()
 logging.info('Received message: %s', message)
 except OSError as ose:
 logging.error('Connection attempt failed: %s', ose)

trio.run(main)

The function open_websocket_url() is a context manager that automatically
connects and performs the WebSocket handshake before entering the block. This
ensures that the connection is usable before ws.send_message(…) is called.
The context manager yields a WebSocketConnection instance that is used
to send and receive messages. The context manager also closes the connection
before exiting the block.

For more details and examples, see Clients.

Server Example

This example briefly demonstrates how to create a WebSocket server. This server
is an echo server, i.e. it responds to each incoming message by sending back
an identical message.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	import trio
from trio_websocket import serve_websocket, ConnectionClosed

async def echo_server(request):
 ws = await request.accept()
 while True:
 try:
 message = await ws.get_message()
 await ws.send_message(message)
 except ConnectionClosed:
 break

async def main():
 await serve_websocket(echo_server, '127.0.0.1', 8000, ssl_context=None)

trio.run(main)

The function serve_websocket() requires a function that can handle each
incoming connection. This handler function receives a
WebSocketRequest object that the server can use to inspect the client’s
handshake. Next, the server accepts the request in order to complete the
handshake and receive a WebSocketConnection instance that can be used
to send and receive messages.

For more details and examples, see Servers.

Clients

Client Tutorial

This page goes into the details of creating a WebSocket client. Let’s start by
revisiting the Client Example.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	import trio
from trio_websocket import open_websocket_url

async def main():
 try:
 async with open_websocket_url('wss://localhost/foo') as ws:
 await ws.send_message('hello world!')
 message = await ws.get_message()
 logging.info('Received message: %s', message)
 except OSError as ose:
 logging.error('Connection attempt failed: %s', ose)

trio.run(main)

Note

A more complete example is included in the repository [https://github.com/HyperionGray/trio-websocket/blob/master/examples/client.py].

As explained in the tutorial, open_websocket_url(…) is a context manager
that ensures the connection is properly opened and ready before entering the
block. It also ensures that the connection is closed before exiting the block.
This library contains two such context managers for creating client connections:
one to connect by host and one to connect by URL.

	
async with trio_websocket.open_websocket(host, port, resource, *, use_ssl, subprotocols=None, extra_headers=None, message_queue_size=1, max_message_size=1048576, connect_timeout=60, disconnect_timeout=60) as ws

	Open a WebSocket client connection to a host.

This async context manager connects when entering the context manager and
disconnects when exiting. It yields a
WebSocketConnection instance.

	Parameters

	
	host (str) – The host to connect to.

	port (int) – The port to connect to.

	resource (str) – The resource, i.e. URL path.

	ssl.SSLContext] use_ssl (Union[bool,) – If this is an SSL context, then
use that context. If this is True then use default SSL context. If
this is False then disable SSL.

	subprotocols – An iterable of strings representing preferred
subprotocols.

	extra_headers (list[tuple[bytes,bytes]]) – A list of 2-tuples containing
HTTP header key/value pairs to send with the connection request. Note
that headers used by the WebSocket protocol (e.g.
Sec-WebSocket-Accept) will be overwritten.

	message_queue_size (int) – The maximum number of messages that will be
buffered in the library’s internal message queue.

	max_message_size (int) – The maximum message size as measured by
len(). If a message is received that is larger than this size,
then the connection is closed with code 1009 (Message Too Big).

	connect_timeout (float) – The number of seconds to wait for the
connection before timing out.

	disconnect_timeout (float) – The number of seconds to wait when closing
the connection before timing out.

	Raises

	HandshakeError – for any networking error,
client-side timeout (ConnectionTimeout, DisconnectionTimeout),
or server rejection (ConnectionRejected) during handshakes.

	
async with trio_websocket.open_websocket_url(url, ssl_context=None, *, subprotocols=None, extra_headers=None, message_queue_size=1, max_message_size=1048576, connect_timeout=60, disconnect_timeout=60) as ws

	Open a WebSocket client connection to a URL.

This async context manager connects when entering the context manager and
disconnects when exiting. It yields a
WebSocketConnection instance.

	Parameters

	
	url (str) – A WebSocket URL, i.e. ws: or wss: URL scheme.

	ssl_context (ssl.SSLContext or None) – Optional SSL context used for wss: URLs. A default
SSL context is used for wss: if this argument is None.

	subprotocols – An iterable of strings representing preferred
subprotocols.

	extra_headers (list[tuple[bytes,bytes]]) – A list of 2-tuples containing
HTTP header key/value pairs to send with the connection request. Note
that headers used by the WebSocket protocol (e.g.
Sec-WebSocket-Accept) will be overwritten.

	message_queue_size (int) – The maximum number of messages that will be
buffered in the library’s internal message queue.

	max_message_size (int) – The maximum message size as measured by
len(). If a message is received that is larger than this size,
then the connection is closed with code 1009 (Message Too Big).

	connect_timeout (float) – The number of seconds to wait for the
connection before timing out.

	disconnect_timeout (float) – The number of seconds to wait when closing
the connection before timing out.

	Raises

	HandshakeError – for any networking error,
client-side timeout (ConnectionTimeout, DisconnectionTimeout),
or server rejection (ConnectionRejected) during handshakes.

Custom Nursery

The two context managers above create an internal nursery to run background
tasks. If you wish to specify your own nursery instead, you should use the
the following convenience functions instead.

	
await trio_websocket.connect_websocket(nursery, host, port, resource, *, use_ssl, subprotocols=None, extra_headers=None, message_queue_size=1, max_message_size=1048576)

	Return an open WebSocket client connection to a host.

This function is used to specify a custom nursery to run connection
background tasks in. The caller is responsible for closing the connection.

If you don’t need a custom nursery, you should probably use
open_websocket() instead.

	Parameters

	
	nursery – A Trio nursery to run background tasks in.

	host (str) – The host to connect to.

	port (int) – The port to connect to.

	resource (str) – The resource, i.e. URL path.

	ssl.SSLContext] use_ssl (Union[bool,) – If this is an SSL context, then
use that context. If this is True then use default SSL context. If
this is False then disable SSL.

	subprotocols – An iterable of strings representing preferred
subprotocols.

	extra_headers (list[tuple[bytes,bytes]]) – A list of 2-tuples containing
HTTP header key/value pairs to send with the connection request. Note
that headers used by the WebSocket protocol (e.g.
Sec-WebSocket-Accept) will be overwritten.

	message_queue_size (int) – The maximum number of messages that will be
buffered in the library’s internal message queue.

	max_message_size (int) – The maximum message size as measured by
len(). If a message is received that is larger than this size,
then the connection is closed with code 1009 (Message Too Big).

	Return type

	WebSocketConnection

	
await trio_websocket.connect_websocket_url(nursery, url, ssl_context=None, *, subprotocols=None, extra_headers=None, message_queue_size=1, max_message_size=1048576)

	Return an open WebSocket client connection to a URL.

This function is used to specify a custom nursery to run connection
background tasks in. The caller is responsible for closing the connection.

If you don’t need a custom nursery, you should probably use
open_websocket_url() instead.

	Parameters

	
	nursery – A nursery to run background tasks in.

	url (str) – A WebSocket URL.

	ssl_context (ssl.SSLContext or None) – Optional SSL context used for wss: URLs.

	subprotocols – An iterable of strings representing preferred
subprotocols.

	extra_headers (list[tuple[bytes,bytes]]) – A list of 2-tuples containing
HTTP header key/value pairs to send with the connection request. Note
that headers used by the WebSocket protocol (e.g.
Sec-WebSocket-Accept) will be overwritten.

	message_queue_size (int) – The maximum number of messages that will be
buffered in the library’s internal message queue.

	max_message_size (int) – The maximum message size as measured by
len(). If a message is received that is larger than this size,
then the connection is closed with code 1009 (Message Too Big).

	Return type

	WebSocketConnection

Custom Stream

The WebSocket protocol is defined as an application layer protocol that runs on
top of TCP, and the convenience functions described above automatically create
those TCP connections. In more obscure use cases, you might want to run the
WebSocket protocol on top of some other type of transport protocol. The library
includes a convenience function that allows you to wrap any arbitrary Trio
stream with a client WebSocket.

	
await trio_websocket.wrap_client_stream(nursery, stream, host, resource, *, subprotocols=None, extra_headers=None, message_queue_size=1, max_message_size=1048576)

	Wrap an arbitrary stream in a WebSocket connection.

This is a low-level function only needed in rare cases. In most cases, you
should use open_websocket() or open_websocket_url().

	Parameters

	
	nursery – A Trio nursery to run background tasks in.

	stream (trio.abc.Stream [https://trio.readthedocs.io/en/stable/reference-io.html#trio.abc.Stream]) – A Trio stream to be wrapped.

	host (str) – A host string that will be sent in the Host: header.

	resource (str) – A resource string, i.e. the path component to be
accessed on the server.

	subprotocols – An iterable of strings representing preferred
subprotocols.

	extra_headers (list[tuple[bytes,bytes]]) – A list of 2-tuples containing
HTTP header key/value pairs to send with the connection request. Note
that headers used by the WebSocket protocol (e.g.
Sec-WebSocket-Accept) will be overwritten.

	message_queue_size (int) – The maximum number of messages that will be
buffered in the library’s internal message queue.

	max_message_size (int) – The maximum message size as measured by
len(). If a message is received that is larger than this size,
then the connection is closed with code 1009 (Message Too Big).

	Return type

	WebSocketConnection

Servers

Server Tutorial

This page goes into the details of creating a WebSocket server. Let’s start by
revisiting the Server Example.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	import trio
from trio_websocket import serve_websocket, ConnectionClosed

async def echo_server(request):
 ws = await request.accept()
 while True:
 try:
 message = await ws.get_message()
 await ws.send_message(message)
 except ConnectionClosed:
 break

async def main():
 await serve_websocket(echo_server, '127.0.0.1', 8000, ssl_context=None)

trio.run(main)

Note

A more complete example is included in the repository [https://github.com/HyperionGray/trio-websocket/blob/master/examples/server.py].

As explained in the tutorial, a WebSocket server needs a handler function and a
host/port to bind to. The handler function receives a
WebSocketRequest object, and it calls the request’s
accept() method to finish the handshake and obtain a
WebSocketConnection object. When the handler function exits, the
connection is automatically closed. If the handler function raises an
exception, the server will silently close the connection and cancel the
tasks belonging to it.

	
await trio_websocket.serve_websocket(handler, host, port, ssl_context, *, handler_nursery=None, message_queue_size=1, max_message_size=1048576, connect_timeout=60, disconnect_timeout=60, task_status=TASK_STATUS_IGNORED)

	Serve a WebSocket over TCP.

This function supports the Trio nursery start protocol: server = await
nursery.start(serve_websocket, …). It will block until the server
is accepting connections and then return a WebSocketServer object.

Note that if host is None and port is zero, then you may get
multiple listeners that have different port numbers!

	Parameters

	
	handler – An async function that is invoked with a request
for each new connection.

	host (str, bytes, or None) – The host interface to bind. This can be an address of an
interface, a name that resolves to an interface address (e.g.
localhost), or a wildcard address like 0.0.0.0 for IPv4 or
:: for IPv6. If None, then all local interfaces are bound.

	port (int) – The port to bind to.

	ssl_context (ssl.SSLContext or None) – The SSL context to use for encrypted connections, or
None for unencrypted connection.

	handler_nursery – An optional nursery to spawn handlers and background
tasks in. If not specified, a new nursery will be created internally.

	message_queue_size (int) – The maximum number of messages that will be
buffered in the library’s internal message queue.

	max_message_size (int) – The maximum message size as measured by
len(). If a message is received that is larger than this size,
then the connection is closed with code 1009 (Message Too Big).

	connect_timeout (float) – The number of seconds to wait for a client
to finish connection handshake before timing out.

	disconnect_timeout (float) – The number of seconds to wait for a client
to finish the closing handshake before timing out.

	task_status – Part of Trio nursery start protocol.

	Returns

	This function runs until cancelled.

Custom Stream

The WebSocket protocol is defined as an application layer protocol that runs on
top of TCP, and the convenience functions described above automatically create
those TCP connections. In more obscure use cases, you might want to run the
WebSocket protocol on top of some other type of transport protocol. The library
includes a convenience function that allows you to wrap any arbitrary Trio
stream with a server WebSocket.

	
await trio_websocket.wrap_server_stream(nursery, stream, message_queue_size=1, max_message_size=1048576)

	Wrap an arbitrary stream in a server-side WebSocket.

This is a low-level function only needed in rare cases. In most cases, you
should use serve_websocket().

	Parameters

	
	nursery – A nursery to run background tasks in.

	stream (trio.abc.Stream [https://trio.readthedocs.io/en/stable/reference-io.html#trio.abc.Stream]) – A stream to be wrapped.

	message_queue_size (int) – The maximum number of messages that will be
buffered in the library’s internal message queue.

	max_message_size (int) – The maximum message size as measured by
len(). If a message is received that is larger than this size,
then the connection is closed with code 1009 (Message Too Big).

	Return type

	WebSocketRequest

Message Queues

When a connection is open, it runs a background task that reads network data and
automatically handles certain types of events for you. For example, if the
background task receives a ping event, then it will automatically send back a
pong event. When the background task receives a message, it places that message
into an internal queue. When you call get_message(), it returns the first
item from this queue.

If this internal message queue does not have any size limits, then a remote
endpoint could rapidly send large messages and use up all of the memory on the
local machine! In almost all situations, the message queue needs to have size
limits, both in terms of the number of items and the size per message. These
limits create an upper bound for the amount of memory that can be used by a
single WebSocket connection. For example, if the queue size is 10 and the
maximum message size is 1 megabyte, then the connection will use at most 10
megabytes of memory.

When the message queue is full, the background task pauses and waits for the
user to remove a message, i.e. call get_message(). When the background task
is paused, it stops processing background events like replying to ping events.
If a message is received that is larger than the maximum message size, then the
connection is automatically closed with code 1009 and the message is discarded.

The library APIs each take arguments to configure the mesage buffer:
message_queue_size and max_message_size. By default the queue size is
one and the maximum message size is 1 MiB. If you set queue size to zero, then
the background task will block every time it receives a message until somebody
calls get_message(). For an unbounded queue—which is strongly
discouraged—set the queue size to math.inf. Likewise, the maximum message
size may also be disabled by setting it to math.inf.

Timeouts

Networking code is inherently complex due to the unpredictable nature of network
failures and the possibility of a remote peer that is coded incorrectly—or even
maliciously! Therefore, your code needs to deal with unexpected circumstances.
One common failure mode that you should guard against is a slow or unresponsive
peer.

This page describes the timeout behavior in trio-websocket and shows various
examples for implementing timeouts in your own code. Before reading this, you
might find it helpful to read “Timeouts and cancellation for humans” [https://vorpus.org/blog/timeouts-and-cancellation-for-humans/], an article
written by Trio’s author that describes an overall philosophy regarding
timeouts. The short version is that Trio discourages libraries from using
internal timeouts. Instead, it encourages the caller to enforce timeouts, which
makes timeout code easier to compose and reason about.

On the other hand, this library is intended to be safe to use, and omitting
timeouts could be a dangerous flaw. Therefore, this library takes a balanced
approach to timeouts, where high-level APIs have internal timeouts, but you may
disable them or use lower-level APIs if you want more control over the behavior.

Message Timeouts

As a motivating example, let’s write a client that sends one message and then
expects to receive one message. To guard against a misbehaving server or
network, we want to place a 15 second timeout on this combined send/receive
operation. In other libraries, you might find that the APIs have timeout
arguments, but that style of timeout is very tedious when composing multiple
operations. In Trio, we have helpful abstractions like cancel scopes, allowing
us to implement our example like this:

async with open_websocket_url('ws://my.example/') as ws:
 with trio.fail_after(15):
 await ws.send_message('test')
 msg = await ws.get_message()
 print('Received message: {}'.format(msg))

The 15 second timeout covers the cumulative time to send one message and to wait
for one response. It raises TooSlowError if the runtime exceeds 15 seconds.

Connection Timeouts

The example in the previous section ignores one obvious problem: what if
connecting to the server or closing the connection takes a long time? How do we
apply a timeout to those operations? One option is to put the entire connection
inside a cancel scope:

with trio.fail_after(15):
 async with open_websocket_url('ws://my.example/') as ws:
 await ws.send_message('test')
 msg = await ws.get_message()
 print('Received message: {}'.format(msg))

The approach suffices if we want to compose all four operations into one
timeout: connect, send message, get message, and disconnect. But this approach
will not work if want to separate the timeouts for connecting/disconnecting from
the timeouts for sending and receiving. Let’s write a new client that sends
messages periodically, waiting up to 15 seconds for a response to each message
before sending the next message.

async with open_websocket_url('ws://my.example/') as ws:
 for _ in range(10):
 await trio.sleep(30)
 with trio.fail_after(15):
 await ws.send_message('test')
 msg = await ws.get_message()
 print('Received message: {}'.format(msg))

In this scenario, the for loop will take at least 300 seconds to run, so we
would like to specify timeouts that apply to connecting and disconnecting but do
not apply to the contents of the context manager block. This is tricky because
the connecting and disconnecting are handled automatically inside the context
manager open_websocket_url(). Here’s one possible approach:

with trio.fail_after(10) as cancel_scope:
 async with open_websocket_url('ws://my.example'):
 cancel_scope.deadline = math.inf
 for _ in range(10):
 await trio.sleep(30)
 with trio.fail_after(15):
 await ws.send_message('test')
 msg = await ws.get_message()
 print('Received message: {}'.format(msg))
 cancel_scope.deadline = trio.current_time() + 5

This example places a 10 second timeout on connecting and a separate 5 second
timeout on disconnecting. This is accomplished by wrapping the entire operation
in a cancel scope and then modifying the cancel scope’s deadline when entering
and exiting the context manager block.

This approach works but it is a bit complicated, and we don’t want our safety
mechanisms to be complicated! Therefore, the high-level client APIs
open_websocket() and open_websocket_url() contain internal timeouts
that apply only to connecting and disconnecting. Let’s rewrite the previous
example to use the library’s internal timeouts:

async with open_websocket_url('ws://my.example/', connect_timeout=10,
 disconnect_timeout=5) as ws:
 for _ in range(10):
 await trio.sleep(30)
 with trio.fail_after(15):
 await ws.send_message('test')
 msg = await ws.get_message()
 print('Received message: {}'.format(msg))

Just like the previous example, this puts a 10 second timeout on connecting, a
separate 5 second timeout on disconnecting. These internal timeouts violate the
Trio philosophy of composable timeouts, but hopefully the examples in this
section have convinced you that breaking the rules a bit is justified by the
improved safety and ergonomics of this version.

In fact, these timeouts have actually been present in all of our examples so
far! We just didn’t see them because those arguments have default values. If you
really don’t like the internal timeouts, you can disable them by passing
math.inf, or you can use the low-level APIs instead.

Timeouts on Low-level APIs

In the previous section, we saw how the library’s high-level APIs have internal
timeouts. The low-level APIs, like connect_websocket() and
connect_websocket_url() do not have internal timeouts, nor are they
context managers. These characteristics make the low-level APIs suitable for
situations where you want very fine-grained control over timeout behavior.

async with trio.open_nursery():
 with trio.fail_after(10):
 connection = await connect_websocket_url(nursery, 'ws://my.example/')
 try:
 for _ in range(10):
 await trio.sleep(30)
 with trio.fail_after(15):
 await ws.send_message('test')
 msg = await ws.get_message()
 print('Received message: {}'.format(msg))
 finally:
 with trio.fail_after(5):
 await connection.aclose()

This example applies the same 10 second timeout for connecting and 5 second
timeout for disconnecting as seen in the previous section, but it uses the
lower-level APIs. This approach gives you more control but the low-level APIs
also require more boilerplate, such as creating a nursery and using try/finally
to ensure that the connection is always closed.

Server Timeouts

The server API also has internal timeouts. These timeouts are configured when
the server is created, and they are enforced on each connection.

async def handler(request):
 ws = await request.accept()
 msg = await ws.get_message()
 print('Received message: {}'.format(msg))

await serve_websocket(handler, 'localhost', 8080, ssl_context=None,
 connect_timeout=10, disconnect_timeout=5)

The server timeouts work slightly differently from the client timeouts. The
server’s connect timeout measures the time between receiving a new TCP
connection and calling the user’s handler. The connect timeout
includes waiting for the client’s side of the handshake (which is represented by
the request object), but it does not include the server’s side of the
handshake. The server handshake needs to be performed inside the user’s
handler, e.g. await request.accept(). The disconnect timeout applies to the
time between the handler exiting and the connection being closed.

Each handler is spawned inside of a nursery, so there is no way for connect and
disconnect timeouts to raise exceptions to your code. (If they did raise
exceptions, they would cancel your nursery and crash your server!) Instead,
connect timeouts cause the connection to be silently closed, and the handler is
never called. For disconnect timeouts, your handler has already exited, so a
timeout will cause the connection to be silently closed.

As with the client APIs, you can disable the internal timeouts by passing
math.inf or you can use low-level APIs like wrap_server_stream().

API

In addition to the convenience functions documented in Clients
and Servers, the API has several important classes described
on this page.

Requests

	
class trio_websocket.WebSocketRequest

	A request object presents the client’s handshake to a server handler. The
server can inspect handshake properties like HTTP headers, subprotocols, etc.
The server can also set some handshake properties like subprotocol. The
server should call accept() to complete the handshake and obtain a
connection object.

	
headers

	HTTP headers represented as a list of (name, value) pairs.

	Return type

	list[tuple]

	
proposed_subprotocols

	A tuple of protocols proposed by the client.

	Return type

	tuple[str]

	
local

	The connection’s local endpoint.

	Return type

	Endpoint or str

	
remote

	The connection’s remote endpoint.

	Return type

	Endpoint or str

	
await accept(*, subprotocol=None, extra_headers=None)

	Accept the request and return a connection object.

	Parameters

	
	subprotocol (str or None) – The selected subprotocol for this connection.

	extra_headers (list[tuple[bytes,bytes]] or None) – A list of 2-tuples containing key/value pairs to
send as HTTP headers.

	Return type

	WebSocketConnection

	
await reject(status_code, *, extra_headers=None, body=None)

	Reject the handshake.

	Parameters

	
	status_code (int) – The 3 digit HTTP status code. In order to be
RFC-compliant, this should NOT be 101, and would ideally be an
appropriate code in the range 300-599.

	extra_headers (list[tuple[bytes,bytes]]) – A list of 2-tuples
containing key/value pairs to send as HTTP headers.

	body (bytes or None) – If provided, this data will be sent in the response
body, otherwise no response body will be sent.

Connections

	
class trio_websocket.WebSocketConnection

	A connection object has functionality for sending and receiving messages,
pinging the remote endpoint, and closing the WebSocket.

Note

The preferred way to obtain a connection is to use one of the
convenience functions described in Clients or
Servers. Instantiating a connection instance directly is
tricky and is not recommended.

This object has properties that expose connection metadata.

	
closed

	(Read-only) The reason why the connection was closed, or None if the
connection is still open.

	Return type

	CloseReason

	
is_client

	(Read-only) Is this a client instance?

	
is_server

	(Read-only) Is this a server instance?

	
local

	The local endpoint of the connection.

	Return type

	Endpoint or str

	
remote

	The remote endpoint of the connection.

	Return type

	Endpoint or str

This object exposes the following properties related to the WebSocket
handshake.

	
path

	The requested URL path. For clients, this is set when the connection is
instantiated. For servers, it is set after the handshake completes.

	Return type

	str

	
subprotocol

	(Read-only) The negotiated subprotocol, or None if there is no
subprotocol.

This is only valid after the opening handshake is complete.

	Return type

	str or None

	
handshake_headers

	The HTTP headers that were sent by the remote during the handshake,
stored as 2-tuples containing key/value pairs. Header keys are always
lower case.

	Return type

	tuple[tuple[str,str]]

A connection object has a pair of methods for sending and receiving
WebSocket messages. Messages can be str or bytes objects.

	
await send_message(message)

	Send a WebSocket message.

	Parameters

	message (str or bytes) – The message to send.

	Raises

	ConnectionClosed – if connection is already closed.

	
await get_message()

	Receive the next WebSocket message.

If no message is available immediately, then this function blocks until
a message is ready.

If the remote endpoint closes the connection, then the caller can still
get messages sent prior to closing. Once all pending messages have been
retrieved, additional calls to this method will raise
ConnectionClosed. If the local endpoint closes the connection, then
pending messages are discarded and calls to this method will immediately
raise ConnectionClosed.

	Return type

	str or bytes

	Raises

	ConnectionClosed – if the connection is closed.

A connection object also has methods for sending pings and pongs. Each ping
is sent with a unique payload, and the function blocks until a corresponding
pong is received from the remote endpoint. This feature can be used to
implement a bidirectional heartbeat.

A pong, on the other hand, sends an unsolicited pong to the remote endpoint
and does not expect or wait for a response. This feature can be used to
implement a unidirectional heartbeat.

	
await ping(payload=None)

	Send WebSocket ping to remote endpoint and wait for a correspoding pong.

Each in-flight ping must include a unique payload. This function sends
the ping and then waits for a corresponding pong from the remote
endpoint.

Note: If the remote endpoint recieves multiple pings, it is allowed to
send a single pong. Therefore, the order of calls to ``ping()`` is
tracked, and a pong will wake up its corresponding ping as well as all
previous in-flight pings.

	Parameters

	payload (bytes or None) – The payload to send. If None then a random 32-bit
payload is created.

	Raises

	
	ConnectionClosed – if connection is closed.

	ValueError – if payload is identical to another in-flight
ping.

	
await pong(payload=None)

	Send an unsolicted pong.

	Parameters

	payload (bytes or None) – The pong’s payload. If None, then no payload is
sent.

	Raises

	ConnectionClosed – if connection is closed

Finally, the socket offers a method to close the connection. The connection
context managers in Clients and Servers
will automatically close the connection for you, but you may want to close
the connection explicity if you are not using a context manager or if you
want to customize the close reason.

	
await aclose(code=1000, reason=None)

	Close the WebSocket connection.

This sends a closing frame and suspends until the connection is closed.
After calling this method, any further I/O on this WebSocket (such as
get_message() or send_message()) will raise
ConnectionClosed.

This method is idempotent: it may be called multiple times on the same
connection without any errors.

	Parameters

	
	code (int) – A 4-digit code number indicating the type of closure.

	reason (str) – An optional string describing the closure.

	
class trio_websocket.CloseReason(code, reason)

	Contains information about why a WebSocket was closed.

	
code

	(Read-only) The numeric close code.

	
name

	(Read-only) The human-readable close code.

	
reason

	(Read-only) An arbitrary reason string.

	
exception trio_websocket.ConnectionClosed(reason)

	A WebSocket operation cannot be completed because the connection is closed
or in the process of closing.

	
exception trio_websocket.HandshakeError

	There was an error during connection or disconnection with the websocket
server.

	
exception trio_websocket.ConnectionRejected(status_code, headers, body)

	Bases: trio_websocket._impl.HandshakeError

A WebSocket connection could not be established because the server rejected
the connection attempt.

	
exception trio_websocket.ConnectionTimeout

	Bases: trio_websocket._impl.HandshakeError

There was a timeout when connecting to the websocket server.

	
exception trio_websocket.DisconnectionTimeout

	Bases: trio_websocket._impl.HandshakeError

There was a timeout when disconnecting from the websocket server.

Utilities

These are classes that you do not need to instantiate yourself, but you may
get access to instances of these classes through other APIs.

	
class trio_websocket.Endpoint(address, port, is_ssl)

	Represents a connection endpoint.

	
address

	IP address ipaddress.ip_address

	
is_ssl

	Whether SSL is in use

	
port

	TCP port

	
url

	Return a URL representation of a TCP endpoint, e.g.
ws://127.0.0.1:80.

Recipes

This page contains notes and sample code for common usage scenarios with this
library.

Heartbeat

If you wish to keep a connection open for long periods of time but do not need
to send messages frequently, then a heartbeat holds the connection open and also
detects when the connection drops unexpectedly. The following recipe
demonstrates how to implement a connection heartbeat using WebSocket’s ping/pong
feature.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	async def heartbeat(ws, timeout, interval):
 '''
 Send periodic pings on WebSocket ``ws``.

 Wait up to ``timeout`` seconds to send a ping and receive a pong. Raises
 ``TooSlowError`` if the timeout is exceeded. If a pong is received, then
 wait ``interval`` seconds before sending the next ping.

 This function runs until cancelled.

 :param ws: A WebSocket to send heartbeat pings on.
 :param float timeout: Timeout in seconds.
 :param float interval: Interval between receiving pong and sending next
 ping, in seconds.
 :raises: ``ConnectionClosed`` if ``ws`` is closed.
 :raises: ``TooSlowError`` if the timeout expires.
 :returns: This function runs until cancelled.
 '''
 while True:
 with trio.fail_after(timeout):
 await ws.ping()
 await trio.sleep(interval)

async def main():
 async with open_websocket_url('ws://my.example/') as ws:
 async with trio.open_nursery() as nursery:
 nursery.start_soon(heartbeat, ws, 5, 1)
 # Your application code goes here:
 pass

trio.run(main)

Note that the ping() method waits until it receives a
pong frame, so it ensures that the remote endpoint is still responsive. If the
connection is dropped unexpectedly or takes too long to respond, then
heartbeat() will raise an exception that will cancel the nursery. You may
wish to implement additional logic to automatically reconnect.

A heartbeat feature can be enabled in the example client [https://github.com/HyperionGray/trio-websocket/blob/master/examples/client.py].
with the --heartbeat flag.

Contributing

Developer Installation

If you want to help contribute to trio-websocket, then you will need to
install additional dependencies that are used for testing and documentation. The
following sequence of commands will clone the repository, create a virtual
environment, and install the developer dependencies:

$ git clone git@github.com:HyperionGray/trio-websocket.git
$ cd trio-websocket
$ python3 -m venv venv
$ source venv/bin/activate
(venv) $ pip install -r requirements-dev.txt
(venv) $ pip install -e .

This example uses Python’s built-in venv package, but you can of course use
other virtual environment tools such as virtualenvwrapper.

The requirements-dev.in file contains extra dependencies only needed for
development, such as PyTest, Sphinx, etc. Then requirements-dev.txt is
generated from setup.py and requirements-dev.in so that dependencies
used in development and CI builds do not change arbitrarily over time.

Unit Tests

Note

This project has unit tests that are configured to run on all pull requests
to automatically check for regressions. Each pull request should include
unit test coverage before it is merged.

The unit tests are written with the PyTest framework [https://docs.pytest.org/en/latest/]. You can quickly run all unit tests from
the project’s root with a simple command:

(venv) $ pytest
=== test session starts ===
platform linux -- Python 3.6.6, pytest-3.8.0, py-1.6.0, pluggy-0.7.1
rootdir: /home/johndoe/code/trio-websocket, inifile: pytest.ini
plugins: trio-0.5.0, cov-2.6.0
collected 27 items

tests/test_connection.py [100%]

=== 27 passed in 0.41 seconds ===

You can enable code coverage reporting by adding the -cov=trio_websocket
option to PyTest or using the Makefile target make test:

(venv) $ pytest --cov=trio_websocket
=== test session starts ===
platform linux -- Python 3.6.6, pytest-3.8.0, py-1.6.0, pluggy-0.7.1
rootdir: /home/johndoe/code/trio-websocket, inifile: pytest.ini
plugins: trio-0.5.0, cov-2.6.0
collected 27 items

tests/test_connection.py [100%]

---------- coverage: platform darwin, python 3.7.0-final-0 -----------
Name Stmts Miss Cover
--
trio_websocket/__init__.py 369 33 91%
trio_websocket/_version.py 1 0 100%
--
TOTAL 370 33 91%

=== 27 passed in 0.57 seconds ===

Documentation

This documentation is stored in the repository in the /docs/ directory. It
is written with RestructuredText markup [http://docutils.sourceforge.net/rst.html] and processed by Sphinx [http://www.sphinx-doc.org/en/stable/]. To build documentation, run this
command from the project root:

$ make docs

The finished documentation can be found in /docs/_build/. This documentation
is published automatically to Read The Docs [https://readthedocs.org/] for
all pushes to master or to a tag.

Autobahn Client Tests

The Autobahn Test Suite contains over 500 integration tests for WebSocket
servers and clients. These test suites are contained in a Docker [https://www.docker.com/] container. You will need to install Docker before
you can run these integration tests.

To test the client, you will need two terminal windows. In the first terminal,
run the following commands:

$ cd autobahn
$ docker run -it --rm \
 -v "${PWD}/config:/config" \
 -v "${PWD}/reports:/reports" \
 -p 9001:9001 \
 --name autobahn \
 crossbario/autobahn-testsuite

The first time you run this command, Docker will download some files, which may
take a few minutes. When the test suite is ready, it will display:

Autobahn WebSocket 0.8.0/0.10.9 Fuzzing Server (Port 9001)
Ok, will run 249 test cases for any clients connecting

Now in the second terminal, run the Autobahn client:

$ cd autobahn
$ python client.py ws://localhost:9001
INFO:client:Case count=249
INFO:client:Running test case 1 of 249
INFO:client:Running test case 2 of 249
INFO:client:Running test case 3 of 249
INFO:client:Running test case 4 of 249
INFO:client:Running test case 5 of 249
<snip>

When the client finishes running, an HTML report is published to the
autobahn/reports/clients directory. If any tests fail, you can debug
individual tests by specifying the integer test case ID (not the dotted test
case ID), e.g. to run test case #29:

$ python client.py ws://localhost:9001 29

Autobahn Server Tests

Read the section on Autobahn client tests before you read this section. Once
again, you will need two terminal windows. In the first terminal, run:

$ cd autobahn
$ python server.py

In the second terminal, you will run the Docker image:

$ cd autobahn
$ docker run -it --rm \
 -v "${PWD}/config:/config" \
 -v "${PWD}/reports:/reports" \
 -p 9000:9000 \
 --name autobahn \
 crossbario/autobahn-testsuite \
 /usr/local/bin/wstest --mode fuzzingclient --spec /config/fuzzingclient.json

If a test fails, server.py does not support the same debug_cases
argument as client.py, but you can modify fuzzingclient.json to specify a
subset of cases to run, e.g. 3.* to run all test cases in section 3.

Note

For OS X or Windows, you’ll need to edit fuzzingclient.json and
change the host from 172.17.0.1 to host.docker.internal.

Versioning

This project uses semantic versioning [https://semver.org/] for official
releases. When a new version is released, the version number on the master
branch will be incremented to the next expected release and suffixed “dev”. For
example, if we release version 1.1.0, then the version number on master
might be set to 1.2.0-dev, indicating that the next expected release is
1.2.0 and that release is still under development.

Release Process

To release a new version of this library, we follow this process:

	In _version.py on master branch, remove the -dev suffix from the
version number, e.g. change 1.2.0-dev to 1.2.0.

	Commit _version.py.

	Create a tag, e.g. git tag 1.2.0.

	Push the commit and the tag, e.g. git push && git push origin 1.2.0.

	Wait for Travis CI [https://travis-ci.com/HyperionGray/trio-websocket] to
finish building and ensure that the build is successful.

	Wait for Read The Docs [https://trio-websocket.readthedocs.io/en/latest/]
to finish building and ensure that the build is successful.

	Ensure that the working copy is in a clean state, e.g. git status shows
no changes.

	Build package and submit to PyPI: make publish

	In _version.py on master branch, increment the version number to the
next expected release and add the -dev suffix, e.g. change 1.2.0 to
1.3.0-dev.

	Commit and push _version.py.

Credits

Thanks to John Belmonte (@belm0) [https://github.com/belm0] and Nathaniel
J. Smith (@njsmith) [https://github.com/njsmith] for lots of feedback,
discussion, code reviews, and pull requests. Thanks to all the Trio contributors
for making a fantastic framework! Thanks to Hyperion Gray for supporting
development time on this project.

[image: define hyperiongray]
 [https://www.hyperiongray.com/?pk_campaign=github&pk_kwd=agnostic]

Index

 A
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | N
 | O
 | P
 | R
 | S
 | U
 | W

A

 	
 	accept() (trio_websocket.WebSocketRequest method)

 	
 	aclose() (trio_websocket.WebSocketConnection method)

 	address (trio_websocket.Endpoint attribute)

C

 	
 	closed (trio_websocket.WebSocketConnection attribute)

 	CloseReason (class in trio_websocket)

 	code() (trio_websocket.CloseReason property)

 	connect_websocket() (in module trio_websocket)

 	
 	connect_websocket_url() (in module trio_websocket)

 	ConnectionClosed

 	ConnectionRejected

 	ConnectionTimeout

D

 	
 	DisconnectionTimeout

E

 	
 	Endpoint (class in trio_websocket)

G

 	
 	get_message() (trio_websocket.WebSocketConnection method)

H

 	
 	handshake_headers (trio_websocket.WebSocketConnection attribute)

 	
 	HandshakeError

 	headers (trio_websocket.WebSocketRequest attribute)

I

 	
 	is_client (trio_websocket.WebSocketConnection attribute)

 	
 	is_server (trio_websocket.WebSocketConnection attribute)

 	is_ssl (trio_websocket.Endpoint attribute)

L

 	
 	local (trio_websocket.WebSocketConnection attribute)

 	(trio_websocket.WebSocketRequest attribute)

N

 	
 	name() (trio_websocket.CloseReason property)

O

 	
 	open_websocket() (in module trio_websocket)

 	
 	open_websocket_url() (in module trio_websocket)

P

 	
 	path (trio_websocket.WebSocketConnection attribute)

 	ping() (trio_websocket.WebSocketConnection method)

 	
 	pong() (trio_websocket.WebSocketConnection method)

 	port (trio_websocket.Endpoint attribute)

 	proposed_subprotocols (trio_websocket.WebSocketRequest attribute)

R

 	
 	reason() (trio_websocket.CloseReason property)

 	reject() (trio_websocket.WebSocketRequest method)

 	
 	remote (trio_websocket.WebSocketConnection attribute)

 	(trio_websocket.WebSocketRequest attribute)

S

 	
 	send_message() (trio_websocket.WebSocketConnection method)

 	
 	serve_websocket() (in module trio_websocket)

 	subprotocol (trio_websocket.WebSocketConnection attribute)

U

 	
 	url() (trio_websocket.Endpoint property)

W

 	
 	WebSocketConnection (class in trio_websocket)

 	WebSocketRequest (class in trio_websocket)

 	
 	wrap_client_stream() (in module trio_websocket)

 	wrap_server_stream() (in module trio_websocket)

 _static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Trio WebSocket

 		
 Getting Started

 		
 Installation

 		
 Client Example

 		
 Server Example

 		
 Clients

 		
 Client Tutorial

 		
 Custom Nursery

 		
 Custom Stream

 		
 Servers

 		
 Server Tutorial

 		
 Custom Stream

 		
 Message Queues

 		
 Timeouts

 		
 Message Timeouts

 		
 Connection Timeouts

 		
 Timeouts on Low-level APIs

 		
 Server Timeouts

 		
 API

 		
 Requests

 		
 Connections

 		
 Utilities

 		
 Recipes

 		
 Heartbeat

 		
 Contributing

 		
 Developer Installation

 		
 Unit Tests

 		
 Documentation

 		
 Autobahn Client Tests

 		
 Autobahn Server Tests

 		
 Versioning

 		
 Release Process

 		
 Credits

_static/plus.png

